Nuttall's theorem with analytic weights on algebraic S-contours
نویسنده
چکیده
Given a function f holomorphic at infinity, the n-th diagonal Padé approximant to f, denoted by [n/n]f, is a rational function of type (n,n) that has the highest order of contact with f at infinity. Nuttall’s theorem provides an asymptotic formula for the error of approximation f− [n/n]f in the case where f is the Cauchy integral of a smooth density with respect to the arcsine distribution on [−1,1]. In this note, Nuttall’s theorem is extended to Cauchy integrals of analytic densities on the so-called algebraic S-contours (in the sense of Nuttall and Stahl).
منابع مشابه
Bernstein-szegő Theorem on Algebraic S-contours
Given function f holomorphic at infinity, the n-th diagonal Padé approximant to f , say [n/n]f , is a rational function of type (n,n) that has the highest order of contact with f at infinity. Equivalently, [n/n]f is the n-th convergent of the continued fraction representing f at infinity. BernsteinSzegő theorem provides an explicit non-asymptotic formula for [n/n]f and all n large enough in the...
متن کاملSolution of Potential Problems Using an Overdetermined Complex Boundary Integral Method
The advantages of solving potential problems using an overdetermined boundary integral element method are examined. Representing a 2-dimensional potential solution by an analytic complex function forms two algebraic systems from the real and imaginary parts of the discretized form of the Cauchy theorem. Depending on which boundary condition is prescribed, the real or the imaginary algebraic sys...
متن کاملTannaka Duality for Geometric Stacks
Let X and S denote algebraic stacks of finite type over the field C of complex numbers, and let X and S denote their analytifications (which are stacks in the complex analytic setting). Analytification gives a functor φ : HomC(S,X) → Hom(S , X). It is natural to ask for circumstances under which φ is an equivalence. In the case where X and S are projective schemes, a satisfactory answer was obt...
متن کاملOn intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملA Riemann-roch Theorem for Flat Bundles, with Values in the Algebraic Chern-simons Theory Spencer Bloch and Hélène Esnault
Our purpose in this paper is to continue the algebraic study of complex local systems on complex algebraic varieties. We prove a RiemannRoch theorem for these objects using algebraic Chern-Simons characteristic classes. A complex local system E on a smooth, projective complex variety X gives rise to a locally free analytic sheaf E := E ⊗C O an X which (using GAGA) admits a canonical algebraic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 190 شماره
صفحات -
تاریخ انتشار 2015